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Abstract different from assimilation times. The observational in-
crements are propagated at intermediate time steps using

We discuss a 4-dimensional ensemble Kalman filtey,o onsemble of background forecasts. This extension of
method (4DEnKF), which is implemented in a way that i, Fir to a 4DENKF is an analogue to the extension

observations that are asynchronous with the analysis Cys¢ he three-dimensional variational technique (3D-Var)
cle may Ele a55|(rjn|:ated naturally. lTe_sts usmgfthe LOreng, the four dimensional variational technique (4D-Var).
4(_) hva“: € g“r)] € comparef ﬁnadﬁ_s's error (r)] 4DEnKI;The new idea is to infer the linearized model dynamics
with other, ad hoc means of handling asynchronous o, the ensemble instead of the tangent-linear map, as

servations. done in conventional 4D-Var schemes. Furthermore, it
was shown in (Hunt et al. (2003) that in the case of linear
dynamics, 4DEnKF is equivalent to instantaneous assim-
The Kalman filter is a key feature of data assimilation inilation of measured data.

numerical weather and ocean forecasting (Kalnay, 2003).

Its adaptive nature is the cornerstone of efforts to opti-2. ENSEMBLE KALMAN FILTERS

mize state estimation on the basis of a physical model . . -
and measured observations of related variables. TheI'St recall the standard EnKF method, which assimilates

Kalman filter is an optimal solution in the case of linear observations that are time-synchronous with the analysis.

system dynamics. Let

The difficulty of data assimilation in numerical Xm = Gm(X1, - - -, Xm) 1)
weather forecasting is tied to the large number of varifor m = 1,... M be a continuous dynamical system
ables in the model and the nonlinearity of the dynamicsepresenting the background vector field, where=
being modelled. The method of ensemble Kalman fil-(x, ... x,). The Ensemble Kalman Filter is designed
ters (EnKF) has developed as a means of attacking boty track the evolution of aM-dimensional Gaussian dis-
problems. An ensemble of background vector fields isyribution centered at(t) with covariance matri® (t).
integrated by the model and used to estimate the current  The jmplementation of (Ott et al. 2003; Tippett

covariance matrix, a key part of the Kalman computa-gt 5|, 2003), followsk + 1 trajectories of (1) starting
tion. Numerical experiments have shown that ensemble.o initial conditionsx®®. .. xak*1) gver a time in-

Kalman filters (EnKF, e.g., Evensen 1994; Evensen anggya|[t,, t,]. We assume the system is high-dimensional,
van Leewen 1996, Houtekamer and Mitchell 1998, 2001imeaning thak + 1 < M. Thek + 1 initial condi-
Hamill and Snyder 2000) are efficient ways to carry outtions should be chosen so that their sample mean and
data assimilation from simple models to state—of—the—arfsamp|e covariance aR(ty) andP (t.), respectively. Af-
operational numerical prediction models. The ensemblgg, following the system over the time interval, de-
square-root Kalman filter approach (Tippett et al. 2003iyote the trajectory points at the end of the interval by
Bishop et al. 2001; Anderson 2001; Whitaker and HamiIIXb(l), ..., xb&*D “and compute a new sample megh
2002; Ott et al. 2002) has attracted much recent attentiory 4 sample covarian® from thesek + 1 vectors. This

Hunt et al. (2003) proposed a means for asyn-is gchieved by defining the mean vector
chrononous observations to be assimilated in the ensem-
ble square root Kalman filter. The Four-Dimensional p 1 k& be)
Ensemble Kalman Filter (4DEnKF) is a practical way X =rs1 2
of unifying the ensemble Kalman filter and the four-
dimensional variational approach. Observations can bgng

taken into account in a natural way, even if taken at times sxP@) = xbi) _ b
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and theM x M covariance matrix It can be checked that

P> = XP(X®)T. @) o = 1L kfxa“)
. . . . k+1 <%
The maximum possible rank & is k, since the sum of =1
the columns oK is zero. P2 = X&X?¥)T (5)

In the Ensemble Kalman Filter, data assimilation tisfy (3
is done using observations assumed to have been takeR ' y (3).

at timet,. The observations are used to replace the& ASSIMILATION OF ASYNCHRONOUSDATA
dynamics-generated péq“P, PP at timet, with a revised

pair X%, P2 that are used as(t,) andP(t.) on the next The above description assumes that the data to be
time intervallt;, t.] wheret;, = tp. assimilated was observed at the assimilation time

In the typical case the rank & isk. Thenthe col- The 4DEnKF method adapts EnKF to handle asyn-
umn spacé of PP is k-dimensional, and equals the row chronous observations, those that have occurred at non-
space, sinc®® is a symmetric matrix. The orthonor- assimilation times. The key idea is to mathematically
mal eigenvectors®, ..., u® of PP that correspond to  treat the observation as a slightly modified observation
nonzero eigen\/a|ues span this space. Since the Variati(ﬁf the current state at the assimilation time. The method
of the ensemble members occurs in the directions sparff (Hunt et al. 2003) consists of using the dynamics con-
ning the vector spac®, we generate corrections®@ in  tained in the ensemble members to carry this out. In this

that space. Le® = [u®)]---[u®] be theM x k matrix ~ way we avoid the need to linearize the original equations
whose columns form a basis 8 To represenP® in of motion, as is necessary in standard implementations
this basis, define thie x k matrixP? = QTPPQ. of 4D-Var.

The data analysis step for EnKF uses observations ~ Notice that Egs. (3,4,5) result in analysis vec-
(y1,...,y)) measured at assimilation timgthat we as-  tors x2®, ..., xa**1 that lie in the space spanned by
sume are linearly related to the dynamical statey  the background ensembie®, ..., x*&*1). " Consider
y = Hx, whereH is the observation operator. This as- model states of the form
sumption simplifies our presentation, but the method can k+1 ,
be extended to the case of a nonlinear observation op- Xo = ) w;xP0), (6)
erator. Denote by the error covariance matrix of the =1
observations. Definel = HQ to restrict the action of The goal of the analysis is to find the appropriate set of
H to the subspacB. Recursive weighted least squares weightswf“), . W;‘gi for each analysis vectod).
with current solutiork® and error covariance matri? Now lety = h(x) be a particular observation made
yields at timet. 7 t,. We associate to the statgin (6) at time

pa = Pbu+ATRIAPD)L t, a corresponding state

o - pagTp-1 b k+1
A_); : z)H R A(y HX") X = zWch(i), )
X = X°+QAR (3) 4

The corrected most likely solution ¥, with error co-  wherex°®( is the state of théth ensemble solution at
variance matriP2a. timet.. We assign the observatitifx.) at timet; to the
To finish the step and prepare for a new step on the&tatex, given by (6). Eqn. (7) was utilized by (Bishop
next time interval, a new ensemblelof+ 1 initial con- et al. 2001) and (Majumdar et al. 2002) to predict the
ditionsx@, ..., x3k*D must be produced. They should forecast effects of changes in the analysis error. Here, we
have the analysis meaf and analysis covariance ma- use this property to propagate the dynamical information
trix P2, One approach (Ott et al. 2002), out of many within the analysis time window.
possible choices, is to define the positive square root ma- |t remains to express the asynchronous observations
trix h(xc) as functions ok, the state at the analysis time.
— {1+ (DY (BPy-1(Ba _ pbypby-15b11/2 This functional relationship is needed to apply the stan-
Y= O (PR = POED X, (4) dard recursive least squares equation as in (3). Let
b — QT yb : ia = yb
whereX? =Q'X .lDefme the matrixX? = X°Y and Ep = [X°D)] . .. [x20+D)]
X2 = —[5Xa(1)|---|5xa(k+1)]. and
vk Ee = [x°®)] ... [xCk+D]
‘ ‘ be the matrices whose columns are the ensemble mem-
x20) = gxal) 4 32, bers at the time, andt., respectively. Then (6) and

Next define the vectors



(7) say thatEpw = xp, andEcw = X, respectively, mean square deviation from the mean is approximately
wherew = [wy,...,Wy1]". The orthogonal projec- 3.61 for the true trajectory. We produced artificial noisy
tion to the column span ofy, is given by the matrix observations at each time intervat by adding uncorre-
En(EJ E») "*Ey , meaning that the coefficients in (6)  lated Gaussian noise with varianteo the true state at
can be defined by = (EJ E,) "E/ x,. The linearcom-  each spatial location.

bination (7) isxc = Ecw = Ec(E/ Ep) E/[ xp. There-
fore the observatioh(x.), expressed as a function of the

background state, at the time of assimilation, is ' i

h(Ecw) = h(Ec(Eg Ep) 'Eg Xp). ® g% l
[}

The latter expression can be substituted directly intc 0.6 . %

the ensemble filter equations (3). For example, a sef *

of observations denoted by the matrdix and time- $0.4 g %

stamped at; can be represented at tieby the matrix § . o O

HE:(EJ Ep) "'E[. Therefore the innovatiog — Hx. 202 g v B 0 0 O

learned from the observations is treated insteay as

HEc(E, Ep) *E[l Xy in the assimilation step. This tech- % 5 7 5 5 0

nigue is equivalent to the computation of the forcing of steps per analvsis

the observational increments at the correct time in 4D-
Var; however, it propagates the increments forward or F!G. 11 Root mean square error of proposed 4DEnKF

backward in time without the need for the linear tangent™ethod (circles) compared to standard EnKF (asterisks) and
model o its adjoint EnKF with time interpolation (triangles). Variance inftatiis

Multiol b i handled in th set at0.005 per time step. Symbols showing RMSE = 1 actu-
ultiple observations are handied in the SameaIIy represent values 1. RMSE is averaged over several runs

manner. Assume the observatioq matrix Hs = 5£ 40,000 steps.

(h]|---|h")T, where the observation row vectors

hy, ..., h, correspond to timetk,, ..., t., respectively. ) ) o
Then the observation matrkx in (3) is replaced with the F|gur§ 1 ShOV\_’S that ifwe use 4DEnKFZ a55|m|_lat|ons
matrix can be skipped with little loss of accuracy in tracking the

h; Ec, system state. The system is advanced in steps of size
Te \_1T At = .05, but instead of assimilating the observations
at each step, assimilation of past data is done only ev-
hiEc, ery everys steps. The resulting root mean square error
In addition, it should be noted that the can be smaller (RMSE) is plotted as circles in Figure 1 as a function of
or larger tharty, allowing for observations to be used at s. Fors < 6, it appears that little accuracy is lost. The
their correct observational time even after the nominalfact that the RMSE in Fig. 1 stays constansascreases
analysis time. In the case of linear system dynamics, thehows the ability of 4ADEnKF to take asynchronous ob-
4DEnKF technique is equivalent to assimilating data atservations into account without carrying out analysis at

the time it is observed. each observation step, for the Lorenz40 example. As
mentioned above, it can be shown analytically that the
4. COMPUTER EXPERIMENTS 4DEnKF method is equivalent to assimilating at each ob-

servation time in the case of linear background dynamics.

The differential equations mpdel qf (Lorenz, 1998) 'S The experiment shows that the property can hold as well
a reasonably complex, but simply implemented spatio+

. X . . for chaotic, nonlinear dynamics, at least for small values
temporal dynamical model that is useful for illustrating y

the use of 4ADEnKF. Consider the vector field defined byO S.The RMSE of two other methods are shown in Fig. 1

Xm = (Xms1 — Xm—2)Xm_1 — Xm + F (10) for comparison. The asterisks denote the RMSE found
by using standard EnSQKF, allowirgysteps of length
form = 1,...,M and with periodic boundary condi- At to elapse between assimilations. Only those obser-

tionsxy = Xm+1. In experiments shown here, the forcing vations occurring at the assimilation time were used for
parameter was set 6 = 8 and the system dimension assimilation. The triangles refer to time-interpolatidn o
M = 40. Under these conditions, the system dynamicshe data since the last assimilation. In this alternative,
exhibit high-dimensional chaos. linear interpolation of individual observations as a func-

A long background trajectory™, to be considered tion of the ensemble background state evolved by the
as the true trajectory, was integrated. The average roohodel is used to create an improved observafig(ty)



at the assimilation time. In other words, the innovationments were computed with the background at the ob-
at timet. is added instead at assimilation timje For  serving time, a method also used in operational centers.
the Lorenz example, where the observations are noisyVe have also achieved similar results by applying the
states, this amounts to replacing the observation at timdDEnKF methodology to the Local Ensemble Kalman
te with ya(ty) = y (tc) + X, — X for assimilation at time  Filter (LEKF), as developed in (Ott et al. 2003). The lo-
ty, which is carried out by standard EnKF. The idea be-cal approach is based on the hypothesis that assimilation
hind this technique is widely used in operational 3D-Varcan be done on moderate-size spatial domains and re-
systems to assimilate asynchronous observations (e.cassembled. The 4D treatment of the asynchronous local
Huang et al. 2002; Benjamin et al. 2003). Our implemen-observations can be exploited in the same way as shown
tation provides somewhat optimistic results for this tech-in this article.

nigue, since our background error covariance matrix is  The computational savings possible with the
not static (independent of time) and homogeneous (indedDEnKF technique arise from the ability to improve the
pendent of location) as itis assumed in a 3D-Var. As Fig-use of asynchronous observations without more frequent
ure 1 shows, for the latter two methods, the accuracy oassimilations. The extra computational cost of ADEnKF
the assimilated system state becomes considerably worse dominated by inverting thé& + 1) x (k + 1) matrix
compared to 4DEnKF as the steps per assimilagiam E/ Ep in (8), which is comparatively small if the ensem-

creases. ble sizek + 1 is small compared to the number of state
variablesM. Moreover, applying this technique in con-
1 _ junction with local domains as in LEKF allows to be
7 2:(5) Zf; var. inf. /step greatly reduced in comparison wikh.
508/ v 15%
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